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Abstract—The rate constants of second-order reactions of ozone with 22 substituted ethylenes in CCl, solu-
tions at 293 K were determined using the stopped-flow method. An analysis of the experimental results and pub-
lished data demonstrated that the structure dependence of olefin reactivity can be described in terms of either

the Taft equation or the Swain equation.

INTRODUCTION

Previously [1-6], it was found that the interaction of
ozone with olefins is a second-order reaction; in this
case, the logarithm of the rate constant correlates with
the Taft induction constant 6* [1, 2, 6].

In this work, we studied the kinetics of ozone reac-
tions with 22 substituted ethylenes of the general for-
mula X'X?C=CX3X* using the stopped-flow method
[7] based on O; consumption. The results were consid-
ered in the context of published data [3-6].

EXPERIMENTAL

The reaction kinetics were studied using a setup
with the total dead time (from the instant of mixing the
reactants to the onset of measurements) no longer than
5-7 ms. The concentration of ozone was determined by
photometry on an SF-4A spectrophotometer from the
absorbance of the solution at 270-290 nm. At this
wavelengths range contributions from the absorption of
olefins and their oxidation products can be ignored.
Molar absorption coefficients published by Nakagawa
et al. [8] were used for calculating the concentration
of O;.

The initial concentrations of olefins [Ol] in reaction
mixtures were chosen (depending on the reactivity)
within a range from 1 X 10 to 0.25 mol/l; the initial
ozone concentration [O;], was varied within the range
(0.5-7.0) x 10~* mol/l. The reaction was performed at
293 £ 1 K; CCl, was used as a solvent.

The purification of olefins was performed in accor-
dance with published procedures [9, 10]; CCl, was
purified as described by Nakagawa et al. [8].

RESULTS AND DISCUSSION

All the test olefins react with ozone in accordance
with the following second-order rate equation:

—d[O;]/dt = k[O1][O5].

T Deceased.

In particular, this was supported by the results consid-
ered below.

At [Ol], > [Os], the kinetic curves of ozone con-
sumption are linearized on the coordinates of the first-
order equation

In([O3]/[05]) = k't, ey

where [O;] is the current ozone concentration. As an
example, Fig. 1 demonstrates a semilogarithmic
anamorphosis of the kinetic curve of ozone consump-
tion in the reaction with 2-chloropropene.

The effective rate constant k' linearly increases with
[O1],:

k' = k[Ol],. )

This is indicative of a first order reaction with respect to
the olefin. Thus, in particular, the values of k' (s™!) for
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Fig. 1. (/) Semilogarithmic anamorphosis of the kinetic curves
of ozone consumption in the reaction with 2-chloropropene
and (2) Y as a function of 7 (see Eq. (3)) for the reaction of

ozone with 1-decene: (/)[CH,=CCICH;3], = 5 X 1073 mol/l;
[03]p = 5.2 x 10~ mol/l; (2) [CH,=CHCgH,], = 3 X
10~ mol/I; [O5]y = 1.5 x 10~* mol/.
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Fig. 2. logk as a function of the sum of Taft induction con-

stants for the reaction of ozone with olefins from group (/) 1
or (2) 2.

2-chloropropene are 3.6, 10.8, and 36.4 at the initial
concentrations [Ol], x 10° (mol/l) equal to 5.0, 15.0,
and 50.0, respectively; that is, the second-order rate
constant is k=(7.2+0.1) x 10?1 mol ! s~'.

At comparable reactant concentrations, the kinetic
curves of ozone consumption are described by the over-
all second-order equation (curve 2 in Fig. 1)

Y = In([O1],/[05]y) + ([Olly - [Os])kt,  (3)

where Y = In{([Ol], — [Os], + [O3D/[O5]}.

The table summarizes the rate constants k, which
were determined with the use of Eqgs. (1)—(3), and pub-
lished data [3-6]. The rate constants are presented in
logarithmic form in ascending order (46 olefins and 62
rate constants). The values of k measured by Pryor et al.
[5, 6] were adjusted to a temperature of 293 K based on
the Arrhenius functions found. Williamson and Cvet-
anovic [3, 4] determined the rate constants at 298 K. To
adjust them to a temperature of 293 K, the activation
energies E for olefin nos. la, 2a, 3a, 4a, 7a, 13a, 36a,
and 39a were taken from [5, 6]; E = 2.4 kcal/mol was
taken for nos. 34, 35, 40-42, and 45a in accordance
with [5, 6]. We also assumed that the activation energies
of ozone reactions with olefin nos. 9 and 10 are equal.

An analysis of the results given in the table demon-
strated that the kinetic data can be described not only by
the Taft equation [11]

logk = logk,+ pXc*, @)
but also by the following equation proposed by Swain
etal [12]:

logk = h+ fXF +rXR, )
where logk, , p, h, f, and r are constants; Xo*, XF, and

2R are the sums of the induction, nonresonance, and
resonance constants of the substituents X!, X2, X3, and
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X4, respectively. The values of 6* were taken from [11,
13, 14], and F and R were taken from [12].

The test olefins can be subdivided into three groups
in accordance with the character of correlation in
Egs. (4) and (5).

(1) Olefin nos. 1-5, 8-13, 17-19, 21, 23, 25-38, and
40-45, which contain substituents incapable of conju-
gation with the reaction center >C=C<.

For these olefins, we obtained (see Fig. 2)
logk = (5.58£0.10) — (0.61 £0.03)Xc* (6)

(the coefficient of correlation » = 0.988; the number of
olefins ng; = 35; the number of constants n;, = 44; con-
stant nos. 1a, 1b, and 2a were excluded from the corre-
lation).

A negative p is indicative of the electrophilic char-
acter of ozone in this reaction; this fact provides sup-
port to the conclusions drawn in previous publications
[1,2,6].

According to Pryor et al. [6], p = —0.83 (298 K),
which is somewhat different from the result obtained in
this work. However, Pryor ef al. [6] used only seven
constants for constructing function (6) and the maxi-
mum difference between their logarithms was 1.2,
whereas this difference was approximately equal to 5 in
our case (see, for example, nos. 2b, 2c and 45a, 45b).

The effect of a steric factor on the kinetics of reac-
tion can be illustrated by the example of olefin nos. 1—-
5, 8-10, 12, 13, 17-19, 23, 25, 28, 29, 31-38, and 40—
45:

logk = (5.51£0.22) - (0.61 £ 0.03)Zc*
+(2.6+8.5)x 10°XEs

(r =0.989; ny = 30; n, = 39; constant nos. la, 1b, and
2a were excluded; the values of the steric constant Eg
were taken from [15]).

From a comparison of Egs. (6) and (7), we can con-
clude that the last term in Eq. (7) acts as a small correc-
tion; consequently, steric interactions between the sub-

stituents and the reaction center can be ignored in this
case.

()

Equation (5) for the given group of olefins (nos. 1-
5,8,9,17, 25, 35,41, 42, and 45) has the form

logk = (4.20£0.54) - (2.10+0.21)SF
—(0.74+0.51)ZR

(r=0.992; ny, = 12; n, = 17; constant nos. la, 1b, and
2a were excluded).

(2) Olefin nos. 6, 14-16, 22, 24, and 39, which bear
substituents capable of conjugation with the reaction
center.

For these olefins, we obtained
logk = (6.98 £0.50) - (0.96 £ 0.15)Xc*

®)
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Rate constants of the reactions of ozone with substituted olefins in CCl, solutions at 293 K
No. Olefin Xo* 2E; F 2R logk*[1 mol~! s7'] | Reference
la |ClL,C=CCl, 11.52 -0.08 2.88 -0.96 -0.138 (0) [4]
1b | CL,C=CCl, 11.5 -0.08 2.88 -0.96 -2.202 [5]
2a |CL,C=CHCI 8.9 1.06 2.16 -0.72 0.455 (0.556) [4]
2b | Cl,C=CHCl 8.9 1.06 2.16 -0.72 0.261 [5]
2¢ |Cl,C=CHCI 8.9 1.06 2.16 -0.72 0.204 o
3a |Cl,C=CH, 6.74 2.20 1.44 -0.48 1.266 (1.344) [4]
3b |ClL,C=CH, 6.74 2.20 1.44 -0.48 1.377 [5]
4a |cis-CICH=CHCI 6.74 2.20 1.44 -0.48 1.465 (1.553) [4]
4b |cis-CICH=CHCI 6.74 2.20 1.44 -0.48 1.281 [5]
5 |Cl,C=CHCH;, 6.29 1.08 1.43 -0.89 2.126 [5]
6a |CH,=CHCN 5.0 - 0.90 0.71 2.076 [5]
6b |CH,=CHCN 5.0 - 0.90 0.71 2.362 ok
7a |trans-CICH=CHCI 6.74 - 1.44 -0.48 2.709 (2.772) [4]
7b | trans-CICH=CHCI1 6.74 - 1.44 -0.48 2.672 [5]
8 | CH,=CCICH;4 3.86 2.22 0.71 -0.65 2.857 ok
CH,=CHBr 4.27 3.14 0.72 -0.18 3.047 [5]
10 |CH,=CHCI 4.35 3.34 0.72 -0.24 3.011 (3.072) [4]
11 CH,=CHSIiCl,4 3.24 - - - 3.362 ok
12 |CH,=CHCH,CN 2.73 2.47 - - 3.743 [6]
13a |CH,=CHCH,CI 2.50 3.18 - - 3.998 (4.041) [4]
13b |CH,=CHCH,CI 2.50 3.18 - - 3.741 [5]
13¢ | CH,=CHCH,Cl 2.50 3.18 - - 3.785 ok
14 | CH,=CHC(O)OCH; 3.47 - - - 3.792 [5]
15 | CH,=CCH;C(O)OCH,C4Hs 2.98 - - - 3.845 ok
16 |CH3;CH=CHCHO 2.90 - - - 3.934 *k
17 | CICH=C(CHs), 3.37 1.1 0.70 -1.06 3.941 [5]
18a |CH,=CHCH,Br 2.47 3.12 - - 4.140 [5]
18b |CH,=CHCH,Br 2.47 3.12 - - 4.013 ok
19 | CH,=C(CH;)CH,C1 2.03 2.06 - - 4.041 ok
20 | trans-(CH3);CHC=CHC(CHs); 0.38 -0.64 -0.22 -0.58 4.089 [6]
21 CH,=CHCH,0OC(O)CHj;4 2.3 - - - 4.190 [6]
22 | CH,=C(CH;3)C(O)OCH; 2.98 - - - 4.362 o
23 |CH,=CHCH,0C,Hj; 1.99 3.17 - - 4.417 [6]
24a |CH,=CHOC(O)CH; 3.47 - 0.70 -0.04 4.460 [6]
24b | CH,=CHOC(O)CH; 3.47 - 0.70 -0.04 4.398 ok
25 | CH,=CHC(CHs); 1.17 1.93 -0.11 -0.29 4.461 [6]
26 | CH,=CHCH,0C¢Hj5 2.31 - - - 4.491 *k
27 | CH,=CHSIi(OC,Hs); 1.59 - - - 4.556 *ok
28  |ortho-(HO)C¢H,CH,CH=CH, 1.67 2.97 - - 4.580 ok
29 |CH,=CHCH(CH;)C,H;s 1.26 2.36 - - 4.636 [6]
30 | CH,=CHCH,Si(OC,Hjs), 1.51 - - - 4.672 ok
31 CH,=CHCH,C(CHj); 1.3 1.73 - - 4.785 [6]
32 | CH,=CHCH,C¢Hs 1.67 2.97 - - 4.785 [6]
33 | CH;CH=CHCH,Br 1.95 2.0 - - 4.799 *ok
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Table. (Contd.)
No. Olefin 20* 2E 2F 2R logk*[1 mol~! s71] Reference
34 |n-C3H,CH=CH, 0.88 2.16 - - 4.878 (4.908) [4]
35 | CH,=C(CHy), 0.98 2.24 -0.02 -0.82 4.957 (4.987) [3]
36a |n-C,HyCH=CH, 1.34 297 - - 4.851 (4.881) [3]
36b |n-C4;HyCH=CH, 1.34 2.97 - - 5.011 [5]
36¢ |n-C4;HyCH=CH, 1.34 2.97 - - 5.041 **
37 |n-CgH,CH=CH, 1.32 3.03 - - 5.079 o
38 | CH,=CHSi(CHj;); 0.75 1.57 - - 5.114 **
39a |CH,=CHC¢Hs 2.02 - 0.25 -0.37 4.974 (5.013) [4]
39b | CH,=CHC¢H;s 2.02 - 0.25 -0.37 5.189 [5]
39¢ | CH,=CHC¢Hj5 2.02 - 0.25 -0.37 5.146 **
40 |n-C3H;CH=CHCH;4 0.78 1.93 - - 5.140 (5.170) [3]
41 |cis-CH;CH=CHCH; 0.98 2.24 -0.02 -0.82 5.182 (5.212) [3]
42 | (CH;),C=CHCH; 0.49 1.12 -0.03 -1.23 5.193 (5.223) [3]
43 |n-CgH,CH=CH(CH,);COOH | 0.68 1.6 - - 5.255 o
44 | cis-CH;CH=CHCH(CHs), 0.79 2.72 - - 5.361 [6]
45a |(CHj;),C=C(CHy), 0 0 -0.04 -1.64 5.271 (5.301) [3]
45b |(CHj;),C=C(CHj), 0 0 -0.04 -1.64 5.380 **
46  |trans-CH;CH=CHCH(CHj;), 0.79 - - - 5.387 [6]

* Original values of logk (298 K) are given in parentheses.
** This work.

(r = 0.985; ng, = 6; n, = 9; constant nos. 24a and 24b
were excluded, see Fig. 2) and

logk = (3.73 £ 0.68) + (8.24 + 1.20)F
~(3.17£0.76)=R

(r=0.997; nos. 6, 24, and 39; n, = 7).
(3) trans-Olefins.

The scanty data given in the table did not allow us to
perform a correct quantitative analysis of the reaction
of ozone with trans-olefins. For example, note that the
value of logk for olefin no. 46 lies in the straight line
plotted using Eq. (6). At the same time, the rate con-
stants of O; reactions with olefin nos. 7 and 20 do not
obey Egs. (6)—(8). In particular, it can be seen in the
table that the activity of trans-olefin no. 7 is higher than
that of its cis analog no. 4 by more than one order of
magnitude.

The kinetics of ozone reactions with frans-olefins
was studied in considerable detail by Carles and Fliszar
[16], who found that the structure dependence of their
reactivity obeys the Taft equation. However, quantita-

tive data obtained in the cited work were questioned
more recently by Pryor et al. [6].
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